6,027 research outputs found

    From Schr\"odinger's Equation to the Quantum Search Algorithm

    Get PDF
    The quantum search algorithm is a technique for searching N possibilities in only sqrt(N) steps. Although the algorithm itself is widely known, not so well known is the series of steps that first led to it, these are quite different from any of the generally known forms of the algorithm. This paper describes these steps, which start by discretizing Schr\"odinger's equation. This paper also provides a self-contained introduction to the quantum search algorithm from a new perspective.Comment: Postscript file, 16 pages. This is a pedagogical article describing the invention of the quantum search algorithm. It appeared in the July, 2001 issue of American Journal of Physics (AJP

    Simple Algorithm for Partial Quantum Search

    Full text link
    Quite often in database search, we only need to extract portion of the information about the satisfying item. Recently Radhakrishnan & Grover [RG] considered this problem in the following form: the database of NN items was divided into KK equally sized blocks. The algorithm has just to find the block containing the item of interest. The queries are exactly the same as in the standard database search problem. [RG] invented a quantum algorithm for this problem of partial search that took about 0.33N/K0.33\sqrt{N/K} fewer iterations than the quantum search algorithm. They also proved that the best any quantum algorithm could do would be to save 0.78(N/K)0.78 \sqrt(N/K) iterations. The main limitation of the algorithm was that it involved complicated analysis as a result of which it has been inaccessible to most of the community. This paper gives a simple analysis of the algorithm. This analysis is based on three elementary observations about quantum search, does not require a single equation and takes less than 2 pages.Comment: 3 pages, 3 figure

    Quantum computers can search arbitrarily large databases by a single query

    Full text link
    This paper shows that a quantum mechanical algorithm that can query information relating to multiple items of the database, can search a database in a single query (a query is defined as any question to the database to which the database has to return a (YES/NO) answer). A classical algorithm will be limited to the information theoretic bound of at least O(log N) queries (which it would achieve by using a binary search).Comment: Several enhancements to the original pape

    Quantum computers can search rapidly by using almost any transformation

    Get PDF
    A quantum computer has a clear advantage over a classical computer for exhaustive search. The quantum mechanical algorithm for exhaustive search was originally derived by using subtle properties of a particular quantum mechanical operation called the Walsh-Hadamard (W-H) transform. This paper shows that this algorithm can be implemented by replacing the W-H transform by almost any quantum mechanical operation. This leads to several new applications where it improves the number of steps by a square-root. It also broadens the scope for implementation since it demonstrates quantum mechanical algorithms that can readily adapt to available technology.Comment: This paper is an adapted version of quant-ph/9711043. It has been modified to make it more readable for physicists. 9 pages, postscrip

    Grover's quantum searching algorithm is optimal

    Full text link
    I improve the tight bound on quantum searching by Boyer et al. (quant-ph/9605034) to a matching bound, thus showing that for any probability of success Grovers quantum searching algorithm is optimal. E.g. for near certain success we have to query the oracle pi/4 sqrt{N} times, where N is the size of the search space. I also show that unfortunately quantum searching cannot be parallelized better than by assigning different parts of the search space to independent quantum computers. Earlier results left open the possibility of a more efficient parallelization.Comment: 13 pages, LaTeX, essentially published versio

    Hamiltonian and measuring time for analog quantum search

    Full text link
    We derive in this study a Hamiltonian to solve with certainty the analog quantum search problem analogue to the Grover algorithm. The general form of the initial state is considered. Since the evaluation of the measuring time for finding the marked state by probability of unity is crucially important in the problem, especially when the Bohr frequency is high, we then give the exact formula as a function of all given parameters for the measuring time.Comment: 5 page

    Observation of tunable exchange bias in Sr2_2YbRuO6_6

    Full text link
    The double perovskite compound, Sr2_{2}YbRuO6_{6}, displays reversal in the orientation of magnetic moments along with negative magnetization due to an underlying magnetic compensation phenomenon. The exchange bias (EB) field below the compensation temperature could be the usual negative or the positive depending on the initial cooling field. This EB attribute has the potential of getting tuned in a preselected manner, as the positive EB field is seen to crossover from positive to negative value above TcompT_{\mathrm{comp}}.Comment: 4 Pages, 4 Figure

    Realization of generalized quantum searching using nuclear magnetic resonance

    Full text link
    According to the theoretical results, the quantum searching algorithm can be generalized by replacing the Walsh-Hadamard(W-H) transform by almost any quantum mechanical operation. We have implemented the generalized algorithm using nuclear magnetic resonance techniques with a solution of chloroform molecules. Experimental results show the good agreement between theory and experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar 200

    Scattering quantum random-walk search with errors

    Get PDF
    We analyze the realization of a quantum-walk search algorithm in a passive, linear optical network. The specific model enables us to consider the effect of realistic sources of noise and losses on the search efficiency. Photon loss uniform in all directions is shown to lead to the rescaling of search time. Deviation from directional uniformity leads to the enhancement of the search efficiency compared to uniform loss with the same average. In certain cases even increasing loss in some of the directions can improve search efficiency. We show that while we approach the classical limit of the general search algorithm by introducing random phase fluctuations, its utility for searching is lost. Using numerical methods, we found that for static phase errors the averaged search efficiency displays a damped oscillatory behaviour that asymptotically tends to a non-zero value.Comment: 10 pages, 10 figures. Two figures added for clarity, also made improvements to the tex
    corecore